• 欢迎来到萘析商城
当前位置: 首页 标准物质 菌种 标准菌株 肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530(GB 4789.36-2016)
肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530(GB 4789.36-2016)_
图片仅供参考,具体产品以实物为准!

肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530(GB 4789.36-2016)

CICC 21530 {{goodObj.price > 0 ? '¥' + goodObj.price : '咨询'}} ¥{{goodObj.sell_price || 0}} 咨询 见证书 {{goodObj.date}} CICC {{item.norm}} 见证书 {{inventory}}

肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530介绍:

  • 平台资源号:1511C0005000006357
  • 菌株保藏编号:CICC 21530
  • 中文名称:肠道出血性大肠埃希氏菌
  • 拉丁名称:
  • 模式菌株: 否
  • 来源历史:←中国检验检疫科学研究院食品安全研究所(10102) ←中国疾病预防控制中心
  • 收藏时间:2007-03-05
  • 特征特性:G-杆菌,赖氨酸脱羧酶、鸟氨酸脱羧酶均阳性,精氨酸双水解酶阴性,有动力,IMViC实验:+、+、-、-,尿素酶、苯丙氨酸脱氨酶阴性,不产H2S,不发酵山梨醇、纤维二糖和侧金盏花醇,MUG阴性,发酵乳糖、甘露醇。兼性厌氧,最适pH7.4~7.6。血清型:O157:H7。
  • 参考用途:研究、质量控制,GB 4789.36-2016《大肠埃希氏菌O157:H7NM检验》阳性对照菌株。
  • 生物危害程度:三类
  • 致病对象:人畜共患
  • 致病名称:出血性肠炎
  • 传播途径:经口、消化道

说明书下载: 菌种说明书    打管说明书
肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530培养条件:

  • 培养基:0002 营养肉汤琼脂(Nutrient Agar)
  • 蛋白胨          5.0 g
    牛肉浸粉3.0 g
    NaCl5.0 g
    琼脂15.0 g
    蒸馏水1000.0 mL
    pH7.0

    培养芽胞杆菌时加入5 mg MnSO4·H2O,则有利于产生芽胞。以上成分121℃,灭菌15 min。液体培养基不添加琼脂。推荐使用成品培养基。
  • 培养温度:36 ℃
  • 需氧类型:好氧
肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530参考文献:

  1. 钱云开,王海洋,肖艳霞等。多重PCR-变性高效液相色谱快速检测单核细胞增生李斯特菌毒力基因方法的建立[J]. 中国食品卫生杂志, 2014, 26(2):141-145.
  2. 陈娟, 唐俊妮, 李键等. 五种食源性致病菌多重PCR的条件优化和检出限分析[J]. 中国食品卫生杂志, 2014, 26 (2):137-141.
  3. Q. F. Guan, X. Wang, X. M. Wang, et al. Recombinant outer membrane protein A induces a protective immune response againstEscherichia coli infection in mice[J]. Appl Microbiol Biotechnol, 2015 (Published online).
  4. 李金霞,陈建国, 李雪等. 西沙诺尼果汁抑菌特性与抑菌物质研究[J]. 中国食品学报, 2015, 15(2):143-149
  5. J. C. Wang, R. Li, L. X. Hu, et al. Development of a quantitative fluorescence single primer isothermal amplification-based method for the detection of Salmonella[J]. International Journal of Food Microbiology, 2015, Published online
  6. T. T. Tao, Q. M. Chen, X. M. Bie, et al. Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach[J]. World J Microbiol Biotechnol, 2015, 09, 09(Published online)
  7. S. F. Hu, Y. G. Yu, R. Li, et al. Real-Time TaqMan PCR for Rapid Detection and Quantification of Coliforms in Chilled Meat[J]. Food Anal. Methods, 2015, 08,12 (Published online)
  8. Y. Qian, G. Z. Li, M. B. Xiao, et al. Survey offive food-borne pathogens in commercial cold food dishesand their detection by multiplex PCR[J]. Food Control, 2016, 59:862-869
  9. Y. G. Shi, Y. Wu, X. Y. Lu, et al. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria[J]. Food Chemistry. 2017, 220:249–256
  10. W. B. Wang, L. Q. Liu, S. S. Song, et al. Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody[J]. Sci China Mater . 2016, 59(8): 665–674
  11. J. Y. Zhu, Y. H. Wang, X. H. Li, et al. Combined effect of ultrasound, heat, and pressure on Escherichia coliO157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vacciniumcorymbosum) juice[J]. Ultrasonics Sonochemistry. 2017, Published on
  12. J. Y. Zhu, Y. H. Wang, X. H. Li, et al. Combined effect of ultrasound, heat, and pressure on Escherichia coliO157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vacciniumcorymbosum) juice[J]. Ultrasonics Sonochemistry. 2017
  13. 姬赛赛, 王娴静, 马晶晶, 等. 大肠杆菌O157:H7冷冻损伤及解冻存活的研究[J]. 食品科学. 2017, 网络发表
  14. X. W. Wang, H. Chi, Q. X. Li, et al. Influence of Antibiotic Pressure on Five Plasmid-based Bioluminescent Gram-negative Bacterial Strains[J]. Mol Imaging Biol. 2017, Published online
  15. H. Y. Cui, L. Yuan, L. Lin. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef[J]. Carbohydrate Polymers. 2017, Published online
  16. X. Wang, D. Teng, Q. F. Guan, et al. Escherichia coliouter membrane protein F (OmpF): an immunogenic protein induces cross-reactive antibodies against Escherichia coli [J]. AMB Expr. 2017, 7:155
  17. Xiaozhan Yang, Luqiao Feng, Xiang Qin. Preparation of the Cf-GQDs-Escherichia coliO157: H7 Bioprobe and Its Application in Optical Imaging and Sensing ofEscherichia coli O157: H7[J]. Food Analytical Methods. 2018, Published online
  18. Haiying Cui, Mei Bai, Lu Yuan, et al. Sequential effect of phages and cold nitrogen plasma againstEscherichia coli O157:H7 biofilms on different vegetables[J]. International Journal of Food Microbiology. 2018, 268:1-9
  19. Haiying Cui, Mei Bai , Lin Lin, et al. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coliO157:H7 biofilms on cucumber[J]. International Journal of Food Microbiology. 2018, 266:69-78
  20. J. Chen, J. N. Tang, K. L. Hu, et al. The production characteristics of volatile organic compounds and their relation to growth status of Staphylococcus aureusin milk environment[J]. J. Dairy Sci. 2018, 101:1–9
  21. Z. Y. Wang, Q. Yang, Y. Z. Zhang, et al. Saltatory Rolling Circle Amplification (SRCA): a Novel Nucleic Acid Isothermal Amplification Technique Applied for Rapid Detection of Shigella Spp. in Vegetable Salad[J]. Food Anal. Methods (2018) 11:504–513
  22. Z. C. Li, L. N. Zhang, G. Y. Chen, et al. A new method for comprehensive utilization of wood vinegar by distillation and liquid?liquid extraction[J]. Process Biochemistry. 2018, 75:194–201
  23. Z. C. Li, L. J. Wu, S. Sun, et al. Disinfection and removal performance forEscherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite[J]. Ecotoxicology and Environmental Safety. 2019,174:129-136
  24. K. Y. Wang, S. J. Bu, C. J. Ju, et al. Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin A hybrid nanoflowers[J]. Microchimica Acta. 2019, Published online
  25. S. J. Bu, K. Y. Wang, C. J. Ju, et al. Point-of-care assay to detect foodborne pathogenic bacteria using a low-cost disposable medical infusion extension line as readout and MnO2 nanoflowers[J]. Food Control. 2019, 98:399-404
  26. 赵 芳, 刘 莹, 邹岳源. 基于免疫磁分离的 7 种产志贺毒素大肠埃希氏菌 快速检测方法的评价[J]. 食品安全质量检测学报
  27. 李琼琼, 宋明辉, 蒋 波. 基于酸处理的产志贺毒素大肠埃希菌选择性增菌 方法研究[J]. 食品安全质量检测学报
  28. 吾买尔江·牙合甫 ,王晓杰. 新疆某规模化养殖场 7、14 日龄腹泻羔羊 粪源非 O157 致病性 STEC 菌毒力基因分布调查[J]. 现代畜牧兽医
  29. 张学杰,齐丹华. 植物源香辛料对E. coli O157:H7的杀菌效果比较[J]. 食品研究与开发
  30. Longfeng Wang, Xiaoxue Kong, Yun Jiang. Recovery of high pressure processing (HPP) induced injured Escherichia coli O157:H7 inhibited by Lactobacillus sakei on vacuum-packed ground beef[J]. Food Bioscience

您正在浏览的产品:肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530

手机版:肠道出血性大肠埃希氏菌Escherichia coli EHEC O157:H7CICC 21530

以上信息仅供参考,请以实物批次为准!

商城编码 产品名称 标准值 规格 CAS号 有效期 库存 标准价 数量 操作
见证书
见证书
0
1200
阳性
2支/盒
0
840

GB 4789.6-2016 食品安全国家标准 食品微生物学检验 致泻大肠埃希氏菌检验

适用范围 本标准适用于食品中致泻大肠埃希氏菌的检验,包括肠产毒性大肠杆菌(ETEC)、肠致病性大肠杆菌(EPEC)、肠出血性大肠杆菌(EHEC)、肠侵袭性大肠杆菌(EIEC)等五类致病菌的检测[5][10]。
核心检测方法 采用生化鉴定结合血清学试验(O、H抗原分型)及分子生物学方法(如PCR检测毒力基因)。关键步骤包括增菌培养、选择性分离、生化反应验证及毒素基因检测[5][7]。
检出限与定量限 检出限为1 CFU/25g(定性检测);定量限依据样品类型和预处理方法不同,通常在10^1–10^3 CFU/g范围内[5]。
质控样品要求 需同步进行阳性对照(如标准菌株ATCC 25922)和阴性对照试验。培养基需通过无菌试验和灵敏度验证,确保检测体系有效性[5][10]。
关键实验步骤 1. 前增菌:样品在缓冲蛋白胨水中37℃培养18-24小时;
2. 选择性增菌:转种至肠道菌增菌肉汤;
3. 分离培养:接种麦康凯或山梨醇麦康凯琼脂;
4. 生化鉴定:IMViC试验及血清学凝集;
5. 毒素基因检测:PCR确认stx1/stx2等毒力基因[5][7][10]。
特别说明 1. 肠出血性大肠埃希氏菌(EHEC)需重点检测O157:H7血清型,其在SMAC琼脂上呈无色菌落;
2. 实验人员需具备生物安全二级(BSL-2)防护条件,防止交叉污染;
3. 结果报告需注明具体致病类型及血清型[5][7][10]。
[5] GB4789.6-2016 食品安全国家标准 食品微生物学检验 致泻大... [7] 致病菌的检验—大肠埃希氏菌O157H7的检验(食品微生物检验技术课件) [10] 大肠 埃希氏标准-分析测试百科网

以上信息仅供参考,请以相应标准的原文为准!

客服软件